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Plane and axlsymmetrlcal supersonic nonequlllbrlum flows close to an equlllb- 
rlum homogeneous flow have been the subject of many papers. Vincent1 Cl], 
Moore and Gibson (23, Stakhanov and Stupochenko [3J, Clark [4], Der 151, and 
Ryhmlng [6] Investigated flow past a plane wall and a profile. Worloka and 
Murasakl [7 and 83 considered plane and axlsymmetrlcal supersonlc jets. 
Interesting results on flow past slender pointed bodies of arbitrary (lnclud- 
lng axlsymmetrlcal) cross section were obtained by Clark [9]. Slender pointed 
solids of revolution were also considered by Tkalenko IlO] and Khodyko [ll]. 
Napolltano [123, who did not solve actual flow problems, established lmpor- 
tant relationships between certain thermodynamic and kinetic characteristics 
of the medium (e.g. betweerr different speeds of sound) and derived equations 
for the velocity potential. 

The aforementioned authors determined flow parameters on the surface of a 
profile and a slender solid of revolution, on the axis of a plane stream, 
and on the characteristic extending from the front point of the solid, devel- 
oped Integral representations of the flow parameters, and Investigated the 
damping of perturbations at large distances from the profile, In the region 
between the Initial frozen and equilibrium characteristics. However, all 
of the authors, except Tkalenko and Napolltano, limited themselves to a 
single nonequlllbrlum process. The case of an arbitrary number of nonequl- 
llbrlum processes Is the subject of the present paper. 

1. Let us consider the supersonic steady flow of a nonviscous and ther- 

mally nonconductive gas In which nonequlllbrlum physlco-chemical processes 

are occurring. The enthalpy h of a unit mass of the gas Is determined by 

the pressure p , the density p (or the temperature T of the transla- 

tional degrees of freedom of some component of the gas), and by n para- 

meters 4 kl,..., q.), e.g. by the partial masses of the components and by 

the energies of the various degrees of freedom. We shall investigate plane 

and axlsymmetrlcal flows close to a homogeneous equlllbrlum flow proceeding 

from left to right. Let the direction of the x-axis of the rectangular 

coordinate system X, y coincide with the direction of unperturbed flow; 
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in the axlsymmetrical case the x-axis is the axis of symmetry and the origin 

of wall curvature; the leading edge of the profile or the nose of the solid 

of revolution are situated at x = 0 . There are no perturbations for 
X=--m* The equations describing the flow are of the form 

puu, + pW, == --pa? puv, + VU?, Z _P!, 

(PWL + (Pw)?, = 09 u (2h + w2), + v (211 + W”).!, = 0 (1.1) 

UC/k + l’cliu = G-l @i (P, P, 4) (i = 1, . . ) n) 

Jz = h (P, PI d7 w2 = 2 + v2 

Here u, u are the projections of the velocity of the x- and y-axes; 

the subscripts r and I/ denote the corresponding partial derivatives; 

v=O and 3 In the plane and axlsymmetrlcal cases; the expressions for 

h and W, are known, and In the case of equilibrium all UJ~= 0 ; 7*2 0 
(the relaxation times) are constants Inversely proportional to the rate con- 

stants of the physlco-chemical processes; If T,= m , then pi Is frozen; 

If, on the other hand, 71' 0 > then 4, 1s in equilibrium and Is determined 

by the equation UJ,= 0 . 

All of the quantities are dimensionless. Let u" and p: be the dlmen- 
slona; velocity and density of unperturbed flow, an8 Lo a quantity with the 
dimension of length. Reduction to dimensionless form can be effected by 
dividing x and 1/ by Lo, the velocities by u," the density by pp 
the pressure by poou,02, the enthalpy by umoa, thi specific entropy 8' by 
A, and the temperature by R-‘umoa, where R 1s the gas constant of one 
of the components. Reduction to dimensionless form of the parameters PI 
can be effected by taking account of their dimensions, and this renders the 
constants 7, dimensionless as well. In problems not having a characteristic 
linear dlmenslom A*= IA~'?~~, where TAO Is the dimensional value of the 
relaxation time of the kth process. In this case 'rL= 1 . 

System.(l.l) must be supplemented by relations on the discontinuity sur- 

faces. Let tan !j * V/U ) and let u be the angle between the dlscontlnu- 

ity surface and the x-axis. They can then be written as 
(1.2) . , 

[pzo sin (a -e)I = 0, [W cos (u -e)l = 0 

lp + pw' sin2 (a - O)I = 0, [2h + w21 = 0, [Qil = 0 (i=l,. . . ,?I) 

where [:c] 1s the difference In 6 at the discontinuity. 

2. Linearization of (1.1) and (1.2) Is effected In the usual manner. 

Representing each parameter as the sum of Its unperturbed value and a small 

addend, and retaining the same notation for the addends u, u, p, p, h and 

P as for the parameters themselves, we obtain in place of (1.1) the expres- 

sion (2.4) 

ux = - Pm vx= _P?,, . p,+ u,+ rv+ WY-l= 0, h, = --u, 

fiQix=@ipP+%P+ $j Wijqj (i=l,. , II), h = &p-t hop+ i fqi 

j=l j=l 

Here for 5 = 6 (p, p, q) we have introduced the notation 
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The derivatives are here computed for unperturbed flow. 

Linearizing (1.2) we obtain 

[U] tall0 - [VI -t ]p]tano = 0, [Ul + [Cl can0 = 0 

2 [u] sin2 (T - ]v] sin 2 6 +- [p] sirP CT -i- ]p] = 0 (2.2) 

[h + ul = 0, [Qil = 0 (i-i,...,rt) 

The three first equations of this system together with the fourth, rewrlt- 

ten In the form 
[ul + hp [pl + h, [pl = 0 

form a system of linear homogeneous equations for [ul, [~],,CP] and CPI . 

The slope of the discontinuity surfaces Is determined by the condition of 

its nontrivial solution and 1s given by 

Here om is the frozen speed of sound divided by u," , so that M, 1s the 

frozen Mach number. Thus, as In ordinary gas dynamics, the weak dlscontlnu- 

lty lines coincide with the Mach lines of unperturbed flow. 

Further, from the first, fourth and last equations of (2.1) with allowance 

for (2.2) and for the fact that the flow Is unperturbed for x - - m‘ , we 

find that 

p=h=---vu, p = _ M,‘u - i ajqj (aj z hjh,-1) 

everywhere. j=l 

This and the second equation of (2.1) imply the potentiality of 

If cp is the potential, then 

u =q&c, 2, = %I 

(2.4) 

the flow. 

(2.5) 
The equations for rp and P result from the remaining equations of 

(2.1) and are of the form n 

(2.6) 
n 

wix = - %cP, + 2 %jqj (i = i, . . . , A) 
j=l 

Here the constants X, and x,, are given by the relations 

X$ = .&~~20ip+O<p* Xij = Ojj- 
=j 

The nonvertical character of the flow is In line with the lack of an 
increment s in the specific entropy. In fact, since s = o(P, h, 8)~ lt 
follows that 

But taking account of the reduction to dlmenslonless form 
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(as / ++,,q = - (as / ah),,, = - Tm-l, 
and from the condl&lon of thermodynamic equilibrium of the unperturbed flow 
we find that = 0. Hence from (2.4) we have it that s P 0. 
It also 

(asla9j)p.h,qj+pj 
follows that In this approximation, as In ordinary gas dynamics, 

dlscontlnultles associated with both increases and decreases in pressure are 
admissible. 

The first equation In (2.6) can be changed into a form not containing qI 
and their derivatives. This Is achieved by its n-fold differentiation with 
respect to x and by the elimination of p, from the resulting equations; 
moreover, prior to each differentiation the 
pressions from (2.6 

p 
. 

and of order (n + 2 1 
The resulting equation 

&rar; re,$,a~e,~n~o~~~l~-P 

in x . 

The number of constants in (2.4) ard (2.6) is important in obtaining the 
similarity condition . 
(or M,). 

There are 3 f na such constants In addition to grn 
The replacement of pt by a,p, and TI by ?,(L;l and the division 

of the kinetics equations by the coefficients of pil reduces their number 
to n+n’. Further reduction to n(n + 3)/2 can be effected through the 
use of Onsager's relations 1133. 
form (2.6), as the 

In writing the resulting equations in the 
'rl of each kinetics equation it Is convenient to take a 

quantity which 1s the Inverse of the modulus of the coefficient of mr and 
q, in Its right-hand side which is of maximum absolute value. 

3. For g", > 0 , i.e. for A!,> 1 , system (2.6) has two families of real 

characteristics In addition to the streamllnes y = const on which the last 

n equations are fulfilled. If the total derivatives with respect to y 

along them are prlmed, then the equations of the characteristics are 

Here and below the upper (lower) sign corresponds to the characteristics 

of the first (second) family. The coincidence of the discontinuity surfaces 

with the characteristics Is a consequence of the linear approximation. 

Since bodies which perturb the flow are not present with x < 0 , it fol- 
lows by virtue of the parabollclty of system (2.6) that the flow,remalns 
unperturbed everywhere to the left of the characteristics emerging from a, 
the front point of the solid. These characteristics can be discontinuity 
lines, so that perturbations of the flow parameters as they are approached 
from the rl ht enerally differ from zero. 
from (I.2),?2.37 and (2.5) and are of the folShme boundary condltlons follow 

Boocp, -tcp, = 0, 9 = 0, r/=0 for 5 = if)co(Y - &l) (3.2) 

Here the subscript a denotes parameters at the point a , and the con- 
dltlon cp - 0 follows from the continuity of the potential. 

Conditions (3.2) must be supplemented by conditions of: nonleakage at 
the boundary of the solid; constant pressure at the boundary of the stream 
flowing Into the medium at rest; symmetry along the flow axis (at emergence 
of a Jet and ln channel flow) and limited perturbations at Infinity. If 
I/ = y"(x) 1s the equation describing the contour of the solid of revolution, 
profile, or channel wall, and If P. Is the difference between the pressure 
of the medium Into which the flow proceeds and the pressure of unperturbed 
flow, then these conditions can be written as 

‘F,, (.I., ya) 52 v (.c, &J = f (z) FE t/y0 (r) ; r/x, ‘p, (z, y,) 3 u (s, y,) =- p, = const (3.3) 

q!, (.,‘. 0) : t’ (2, 0) = 0 for 2: > $,y,,. j ‘0, j, / T!, I < 32 for r>P,(Y-Y,)! Y--*35 

In accordance with (3.3) and (1.2) the disruption of the continuity of the 

boundary conditions (e.g. a discontinuity in the contour) at the point b is 

usually associated with discontinuities at the point in all the parameters 
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except cp and Q . The discontinuity propagates along the characteristic 

which originates at b . The variation of parameter jumps along It can be 

found from the second equation of (3.1), which is valid on both sides of the 

discontinuity. Recalling that [n,] = 0 , we obtain 

+~~[U]$[2)]'+[U] iaj?Cjtj-‘+Vy-‘[V]=O (3.4) 
j=l 

Writing the second equation of (1.2) In the form 

*fLa [ul + [VI = 0 
and solving the linear equation which results from the ellmlnatlon of [u] 

from (3.4) and (3.5), we find that 

(3.6) 

Here [u], ie the discontinuity In u for I/ = y, . The dlscontinultles 

in V, p, p and h are proportional to [u] and can be determined from (2.5) 

and (3.5). Since the perturbation of the equilibrium flow cennot Increase 

without limit. with distance from the perturbation source, it must be the case 

that 

i ajXjZjel < 0 (3.7) 
j=l 

Moreover, In view of the Independence of the nonequlllbrlum Processes, the 

signs of all the terms must coincide. Near equilibrium UJ, are proportional 

to the partial derivatives of the entropy with respect to 9,, so lt can be 

assumed that (3.7) follows from the conditions of stability of the, equlllb- 

rlum state. 

As Is evident from (3.6) and (3.7), the perturbation damping rate Increases 
with decreasing T and can be very large. It Is Interesting that for almost 
complete damping Ii Is sufficient for the Inequality 
to be fulfilled for at least one process. 

lY - @bl > &JTj 1 Iapjl 
This, of course, does not Imply 

the rapid damping of continuous perturbations to the right of the frozen 
characteristic. 

Formula (3.6) Indicates that In the axlsymmetrlcal case the perturbations 
Increase to Infinity approaching the axis of s-try even when they are 
arbitrarily small for finite y 
from nonequlllbrium. 

as a Fesult of the damping which results 
Because of the llmltatlons of linear theory this result 

does not correspond to true flow and requires nonlinear analysis. The same 
situation obtains in ordinary gas dynamics, 
the perturbations Increase monotonously. 

the difference being that there 

4, Let us Investigate the flow In the neighborhood of the Initial point 
a and the characteristic ac (the boundary of the perturbed zone) (Flg.1). 

In the axlsymmetrlc case for y,= 0 we have a pointed solid of revolution, 
and for y.> 0 a body of a shape close to that of a cylinder. In the varl- 

~=1/~“+(11-%)2, 6= ws-’ (z/r), 77=BCOY (4.1) 
the point a corresponds to r=o, the characteristic 00 is the ray 

ti=lc//, and the velocity components are given by Formulas 

u = (pr co5 6 - ‘per-l sin fi , v = Ija, (cp, sini) + ‘per-l cos tb) (4.2) 



798 A.W. Kraiko 

We shall attempt to obtain cp (r, 6) and Qi(~, 6) in the form of series 

k=l k=l 

(i=l, . . . , n) (4.3) 
The boundary conditions (3.2) on UC then beEome 

~&+)=q{k(~/4)=0 (i=l,.. .,n, #+=I,...) (4.4) 

The condition of nonleakage at the contour of the 

Fig. 1 
body, I.e. the first equation of (3.3), applied to the 

ray In contact with the body at the point a yields 

hk @a) -9, + cpk’ @a,) = ,“O;;“;y, y: CL) (k = 1, . . .) (4.5) Co 

where 6, = tat+ (PO0 fa)i the primes denote derivatives with respect to 6, 

and y"(kJ = #y" (z)/ &k. 

The equations for determining vr and qlr are obtained by substituting 
expansions (4.3) Into system (2.6) written out In the variables P 
and by equating the coefficients of equal powers of r . 

and 6, 
From the first 

equation we obtain the recurrent system 

Q' {k (k + 2) ‘pl cos 26 - (2kcp, sin 26 + Q’COS 26)’ + 

+ &,-” 2 ai [kqi,, fm 6 - (qik-l sin WI - 
t=1 1 

--Sin6((k--)(Pk_l[1-(k-3)C0S2ft]+~~_1[~ftC2(k-2)Sin26]+ 

+ q&OS 26-/3a-2 
i ai t(k - 1) qik_2 COS 6 - (qfk_2 SiXl6Y] = 0 (k = 1, . . .) (4.6) 

14 1 

The equations for 41L can be Integrated, and with allowance for (4.4) 
yield 

q,k(@=--- '5( qk(‘) 
_q ~~~jn~4~dz (i=1,.. .,n, k=l,...) (4.7) 

j=l 

Recalling that qrz q,r= 0 for k s 0 , we can show that the solution of 

the first equation of (4.6) under conditions (4.4) and (4.5) yields the flow 

of a frozen flow past any cone (Y = 1, y.= 0) or, In the contrary case, of 

any cone (or obtuse angle). We thus have [14] 

cP(r, e)= P:;!!!& [ l/a-txs6Arch ( cot 6)] r + jp (6) rrc (4.8) 

for v-1, y.=o. 

v(r,6)= P,-'fn(siRfi_cos6)r + i qk(b)r" (4.!9 
for Y=O or v=l,but y,>O. 

k=? 

In a small neighborhood of the initial point the flow Is determined by 
the first term, which yields the frozen flow. The remaining terms of the 
expansion for sufficiently small r do not play a significant role. Due 
to the finiteness of the nonequillbrlum process rates this result ls natural 
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and one which has already been proved for bodies of finite thickness cl5 and 
161. 

System (4.6) is too compfex to permit analytic construction of the SOlU- 

tion for any k . However, the solution can in fact be constructed in the 

neighborhood of the Initial characteristic, since 6 II n/4 is a regular 
singular point of each equation of the system {with v = 0 for k 2 2). 

Methods for constructfng linearly independent solutions of the corresponding 

homogeneous equations already exdst C17j. Prom these and from a particular 

solution of the nonhomogeneous equation, which Is saught in the form of a 

genecalized power series, a solution satisfying (4.4) can be constructed. 

The successive examination of (4.6) and (4.7) shows that any P)k(@), and 

therefore any q~ (r, 6), is a generalized power series In (6 - ~1.4) with the 

exponent 3/z for a pointed solid of revolution and unity in other cases, 

The first coefficients of each series are proportional to the first eoeffi- 

cient qI(e), which is found from (4.8) and (4.9). Upon substitution of 

expressions for (Pk(6) into (4.3), the series In r which glves 'the first 

coefficient of the generalized serles for cp {r, 61, can be summed. Assuming 

that the remaining series in positive powers of f and (@ -_nf 4) yield 

a certain analytic functilon cp" (f, jj), we obtain expressions which are valid 

near the initial characteristic 

for v = 1 , 15.~ 0 , and 

In the other cases. 

The resulting expressions make it possible to use (4.2) to find the velo- 
city components as fun&Ions of r 
functions of x and b, . 

and 6 and, with the aid of (4.3), as 
For a pointed solid of revolution the velaoity 

discontinuities associated with passage through the initial characteristic 
do not occur. This also happens in ordinary 
for the case under consideration by Tkalenko f 

as dynsnics, and was proved 
101. On the other hand, (4.10 

yields more information than Formula (4.3) in [lo), and at the same time! 
proves the validity of the latter at any distance from the axis of Byrmnetry. 
The derivatives of u and u with respect to ‘6 on the initial character- 
istic are Infinite. 
drical shape, tr and 

In the case of plane bodies Bnd bodies of nearly cylin- 
li 

derivatives are finite. 
are dlsconttiuous by virtue of (4,11), but their 

(3.6). 
!Phe discontinuity damp%ng. of course coincides with 

5. In investigating the linearized equations of nonequilibrium flows 

extensive use has been made of the Laplace transform. fn this we can proceed 
either from system (2.6) or from the (n+ 2)-th order equation for the poten- 

tial. Let UB follow the first of these alternatives. 
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In considering problems corresponding to Fig.1, let us take 

F = 5 - @.< (!/ --- !/a), 11 = BCGY (5.1) 
Instead of x and y as our independent variables. 

In the case of a profile or a plane wall, we set, as we did for a polnted 

solid of revolution, y,= 0 . In the remaining problems we take y.= 1 , 

i.e. we choose the ordinate of the point a as our characteristic linear 

dimension. 

In the new variables system (2.6) becomes n 

(5.2) 

(i = 1 I..., 4 

Let 8 be a complex variable. Recalling that the domain of perturbed 

flow Is given by 7 2 0 , we Introduce the representations 

@,s, v)=&& rl)~+4d~, Qi(s, v)=~u~K ~)exp(-3)G 
0 0' 

In using the Laplace transform special consideration must be given the 

characteristics which are discontinuity surfaces and add extra terms to the 

expressions for the representations of the derivatives. It turns out, how- 

ever, that upon application of the Laplace transform to (5.2) and replacement 

of the derivative representations by their expressions, such terms vanish 

(by virtue of (3.2),(3.5) and the continuity of cp and q), while @ and 

Q are given by Equations 

0’” + (v - 2sq) CD’ - VS@ = sqpoova i qQj 

n j=l (5.3) 

2 (%j 
j=l 

- sr,6ij) Q j = X*S@ (i = 1,. . . ( n) 

Here 6,, Is the Kronecker delta and the primes denote derivatives with 

respect to n . Equations (5.3) make it possible to express all the Q1 in 

terms of @ 
Qi = sD{D-l CD (i=l,...,n) (5.4) 

/I = D (s) = det j! d" (1, Di = Di (s) = det 11 d<* 11 

d” = x rf - st 6 r I.19 dir' = d" (t # i), 

Computing the leading terms of D and D,, which 
degrees n and n-l , we find that for large IsI 

(i, r, t = 1, . . , n) 

diri = x 
P 

are polynomials of 

&L)-’ z _ xiTi-l s-1 _I~_ o (s-~) (i = 1,. . . , n) (5.5) 

At the same time, wlthout llmltlng generality we can assume that D(O)# 0, 
since the equation D(0) = 0 signifies the linear lndepandence of the rlght- 
hand sides of the kinetic equations of system (5.2), and therefore makes It 
possible to reduce their number and the number'of parameters q without 
Increasing the order of the remaining equations. As a rule, Equation D(O)=0 
Indicates that in the choice of p their number exceeded the required 



minimum, i.e. that finite connections such as conditions stipulating the con- 
servation of chemical elements were not exploited. 

Substituting (5.4) Into the right side of the first equation of (5.3), we 

find that 

@" + (Y- 2sq)W- S(Y +sq~)~=O(B=B(s)=D-'P,-' i apj) (5.6) 
In accordance with (5.5) for large 161 j=t 

B (s) = - s-~P,~ i ajxjZj_’ + o (s-1) (5.7) 
j=l 

Substituting (0 - 2 exp(eq) for (5.6) as in [lo], we obtain Equation 

$?T+vz -T@s2(s)2 = 0 (@=i + B) 

whose solutions are expressed In terms of exponentiala (for v - 0) or cylln- 

drlcal functions (for v I 1). The coefficients of the linearly Independent 

solutions are determined by boundary conditions (3.3) on the surface of the 

body and as TJ - 0~ . In considering the conditions at Infinity we take into 

account Equation (3.7). The potential cp Is found from 0 with the aid of 

the inverse transform. For flow past the upper surface of the profile we 

obtain SoS~ 

cpKA=--& 1 F~exW[(~-~)rl+Ell~~ (5.8) 
S.-h 

Here the Integration is carried out along the straight line Flee-e0 lying 

to the right of all the singularities of the integrand; P(S) Is such that 

if L-’ is the symbol of the Inverse transform, then 

L-l IF (s)l = B2 f (E) =- BLo%Y" (E)/ df (5.9) 

Similarly, for a body of nearly cycllndrlcal shape we have 

s,+iCJ 
iF (s) f@(isrP) exP tS(4 + q - &,)I ds 

cp(f?l)=& 1 so@) (isp,o) 
(5.10) 

s&co 
where F(s)18 deizrmlned from (5.9) and @' and Hi" are cylindrical func- 

tions of the third kind (Hankel functions). 

For a pointed solid of revolution (5.11) 

.%+ioo 

cp(L rl) = & 1 iP(s)N,(')(islla)exp [s(& + y)]ds,L-QF(s)]= -II (y;(f)] 
s&co 

ThlS formula can be derived from the results of [lo]. The integral repre- 
sentations of u and v are found by differentiating (5.8),(5.10) and (5.11) 

with allowance for (2.5) and (5.1). 

In the internal problems we take the ordinate of the point a as our 
characteristic dimension and define 5 and q as 

f = 5 + PC0 (Y - I), rl=PoOy (5.12) 

The boundary conditions are the third equation of (3.3) on the flow axis, 

and the first or second equation of (3.3) for y = 1. The domain of 



I~erturbed flow once agaln lies In F :’ 0 . 

As our final result for flow In a channel we have 
$3 im 

where 

Here F(s) Is given by (5.9) and Jo and J1 are cylindrical functions 

of the first kind (Bessel functions). 

If by C(s, 7) and F(s) we understand 

L-1 IF (s)l = - pa 

(5.15) 

(5.1B) 

then (5.13) remains valid for a jet as well. The Integral representations 

of u and V are obta:ned from (2.5) and (5.13) with allowance for (5.12) 

and (5.14)to (5.16). The representations of q In all cases are determined 

from'the resulting expressions with the aid of (5.4). Instead of the Hankel 

and Ressel functions In (5.10),(5.11),(5.14) and (5.15) we can make use of 

the modified Bessel functions I and K , although their arguments are com- 

plex for complex s . 
6. Integral representations can be used for determining the flow para- 

meter fields. Quite useful here Is the multiplication theorem whose use 
reduces solution to finding the originals of the expressions not containing 
F(a). Thus, for a plane wall (5.8) and (5.9) yield 

Here b Is the contour 

are the number of different 
nator, and k, ’ and k,, are 

0 

discontinuity point, 
of yO' 

y_ and /+ are the values 
before and after the discontinuity, sum- 

mation Is carried out over all the discontinuity 
points, and 

s.+ ico 

9(4, ?I=& 5 -+Pm--a)rl+w (6.2) 

so--ice 

Similar formulas are obtalned In other prob- 
lems,and not only for v , but for u as well. 

The form of $(5, q) depends In large measure 
on the form of the function G (s) =1/i + B (s). 
Since B(S) Is a ratio of polynomials of' degrees 
n-l and n, It follows that o"(8) Is a ratio 
of polynomials of degree n . If k” and k 
roots s o and s of the numerator and denoml- 
their mu~tlpllclt~es, it follows that 

D 

6% (s) = fi (S - sjo)kj ’ J!I (s -- sj)kj (6.3) 
j=l j=l 

The coefficients of the polynomials In the numerator and denominator are 
real, therefore their rcots are either real or complex conjugate, and 
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u(S) = 0(-q The latter makes It possible to replace the Integral In (6.2) 
by some inteiral in the upper part of the contour (Im s z 0), this Is valid 
for any contour symmetrical relative to the real axis. The function u(s) 
is not single-valued. The single-valued branch is Isolated by introducing 
a number of branch cuts which connect the zeros of the numerator and deno- 
minator and lie in the finite portion of the plane s . By virtue of (5.7) 
the straight line Re s = So In (6.2) for < > 0 can be replaced by a con- 
to,lr consisting of the circle contalnlng all the roots s and s ' and the 
straight lines I-'_ and f'+ (Flg.2). The integrals over fi_ and 
and the contour in (6.2) reduces to the circle. 

6, cancel, 
This possibility was already 

noted by Clark [4]. Turning now to the upper half of the circle and lnte- 
grating over the real variable, e.g. along the arc of the circle, we repre- 
sent a(!, n) as a real integral with finite limits which can be evaluated 
numerically. Ifall the roots of (6.3) lie in the left half-plane, then the 
circle can be made to pass through the point s = 0 by adding to the inte- 
gral the contribution of 3 due to the pole at the origin of the coordinate 
system. Such a contour substitution is also possible In the case of pointed 
solids of revolution, however, here the parameters on the surface of the 
body can be found In another way by expanding H,(I) for small n . As In 
[I@] we have 

Here El(z) Is an integral. exponential function, s(x 
cross sectional area; it 1s assumed that S'(x) and S" X) are cbntlnuous 
(*). The case considered In [lo] corresponds to 

i 
= n#'fx) Is the 

k,= k,‘= 1 . Por a cone 
s(x) = &x2 and 1. 1.0 

ki Ei(sjz)- 5 k;” Ei(s$‘z) j=l 1 
Since the effect of the nonuniformity must vanish for x - m , the two 

latter formulas Imply that all the roots of (6.3) 
lie In the left half-plane. This property, as 

Y 
well as Inequality (3.7) can apparently also be 
obtained from the conditions of thermodynamic sta- 

n blllty. 

After u has been determined, the values of 
p can be found In accordance with (5.4), 

4 

qi(4. rl)= s u(4 ‘1)4+(E--)dt 
0 

a 5 (i = 1,. . . , ?a) 

Fig. 3 

and are easily be expressed In terms of residues at the points 81, . ..) Sk. 

7. We can use Integral representations for determining the properties of 

the flow far away from the body (for large n). In addition, these can be 

used to investigate the flow for 5 = 0 and 5 - - . However, the first 

case Is considered In detail In Sections 3 and 4, while In the second It Is 

“1 In expression (5.5) in [lo], the roots sJ and 5," In the arguments of 
“F, are erroneously transposed. 



804 *a. cr~lko 

easy to apply the corresponding llmltlng theorem of operational calculus to 

show that If there exist constant 1lmltlng values of the flow parameters, 

these are equlllbrlum In character, I.e. are obtainable from (2.6) for 

71' . . . - T,- 0. 

System (2.6) describes flow for any T If 7.1 0 then It can be 
rewritten, el1mlnatl 

s 
g, with the aid of-the last equ;tlon. The new sys- 

tem differs from (2.6 In the number of equations and In Its coefficients 
which are determined In terms of the same partial derivatives as the Initial 
ones, provided qs Is assumed to be a function of p, p, ql,..., qm_1 by 
virtue of %(Pt P, a) - 0 - 

Further, It Is possible to set 10 etc. Let us assign sub- 
scripts l,..., n to the correspon&&= 2: and' R Here E,, corresponds 
to equilibrium flow, &+._1 to flow in which all ;; are equilibrium with 
the exceptlon of ql, etc. 

The results of [12] Imply that 

M,,>...>M,, P,,>*.*>P, (7.1) 

Thus, the corresponding characteristics are distributed In the way shown 
In Flg.3, where the numbers O,..., n denote characteristics with slopes 
L,..., E,n - 

Let us also Introduce partially frozen flows with TV= -, 
and assign the subscripts I> 2 3, 

B,(S) =.O and o.(sj = 1':" 
n to the functions its',TiLdmb'(sj; 

moreover, In accordance with these definitions 
the initial S,, &, p(8) and u(8) ought to have been assigned the sub- 
script 0 . It can be shown that 

P c&=&,c+k (O) (k=O,...,n) (7.2) 

From (7.1) and (7.2) we find that cl,(O) 5 1 for F < n . 

Let us consider flow past a profile. Here we Introduce q and 7 as 

stated at the end of Section 2, numbering the parameters q in the order of 

decreasing 7 , and taking u,'T~' as our 1'. The coefficients In B(8) In 

this case do not exceed unity. 

It is natural to expect that far away from the profile the Slow is close 

to equilibrium and that the effect of the Initial point to the left of the 

first equlllbrlwn characteristic is small. To Investigate this problem let 

us consider the behavior of Jl(<, n) for large k and a 6 =x - Rmey which 

Is finite or Increases more slowly than y . 

By virtue of relation (7.2) the point 8 P 0 Is a saddle point of the 

function s [ &,n-kd(~)]. As In the case of a single nonequllibrlum para- 

meter C4], for s - 0 the contour of steepset descent (the broken curve in 

Flg.2) touches the Imaginary axis, and with Increasing distance from s=o 

both of its branches asymptotically approach the negative ray of the real axis. 

Let 8 I 0 be a unique or the highest saddle point. Replacing the lnte- 

gration contour In (7.3) by the contour of steepest descent and taking 

account of the residue at the origin as in [4], we obtaln 

skt Y)- 
i  

Wcx,* B, (0) 
a=- 

Pcm ) (7.4) 
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Here Ba (s) = dB (s) 1 ds , so that 

B.9 (0) = b, -f- b,z, + * * * + bl 1, 

The constants b, are on the order of unity. In accordance with the 

assumption made about the character of the saddle point, R,,(O)*< 0 and 

a>O. The difference between (7.4) and the case of a single nonequlllbrlum 
process [3 and 4) lies in the form of P,(O) . As in that case, the perturb- 

ations between the Initial frozen and the equilibrium charcterlstlcs are 

rapidly-damped due to the rapid tendency erf z to -1 , for .s < 0 and the 

width of the transitional zone referred to p near the equilibrium charac- 

teristic diminishes as -3 . y We note that the condition pa 1 required 

for the validity of (7.4) does not exclude very small dimensional values of 

y with high nonequlllbrlum process rates. 

If =,~=?Jz+l~ i.e. with a large difference between the rates of the two 
groups of processes, the first m are practically frozen, and as regards 
the remaining ones we can expect a pattern similar to that just considered. 

Let B-x--__y. We can show that 

After 8 has been replaced by 8~,+~ 9 the last integral with y" T,+~ 
reduces to an Integral with a large parameter p/?,+r , which Is Investigated 
in the same way as (7.3). 

Taking as our characteristic dimension u~,T~,~, we obtain 

9 (0, y) - $ + +erf 
“-fL?l-*Y ( 2i3aJ2B,, (0) 

V/a!, 
CC=-- 

PC0 n-m ) (7.5) 

In contrast to (7.4), the accuracy of the latter formula with increasing 
II Increases only for f/e 7,. It is subsequently violated for y) 1 > 7, 
the flow is described by Formula (7.4). Similarly, for TV v ?a v . ..B T, 
we note a stepwlse transition from one partially equilibrium characteristic 
to another. By virtue of (6.1), all the foregoing is also valid for lnter- 
nal discontinuity points and translation of the origin to the point under 
consideration preserves 17.4) and (7.5). 

The author is grateful to A.B. Vatazhln for useful discussions. 
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