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Plane and axisymmetrical supersonic nonequilibrium flows close to an equilib-
rium homogeneous flow have been the subject of many papers. Vincentl [1],
Moore and Gibson [ 2], Stakhanov and Stupochenko [3], Clark [4], Der [5], and
Ryhming [6] investigated flow past a plane wall and a profile. Morioka and
Murasaki [7 and 8] considered plane and axlsymmetrical supersonic Jets.
Interesting results on flow past slender pointed bodles of arbitrary (includ-
ing axisymmetrical) cross section were obtained by Clark [9]. Slender pointed
solids of revolution were also considered by Tkalenko [10] and Khodyko [11].
Napolitano [12], who did not solve actual flow problems, established impor-
tant relationships between certain thermodynamic and kinetic characteristics
of the medium (e.g. between different speeds of sound) and derived equations
for the velocity potential.

The aforementioned authors determined flow parameters on the surface of a
profile and a slender solld of revolution, on the axls of a plane stream,
and on the characteristic extending from the front point of the solid, devel-
oped 1lntegral representations of the flow parameters, and investigated the
damping of perturbations at large distances from the profile, in the region
between the initial frozen and equilibrium characteristics. However, all
of the authors, except Tkalenko and Napolitano, limited themselves to a
single nonequilibrium process. The case of an arbitrary number of nonequi-
1lidbrium processes 1s the subject of the present paper.

1. Let us consider the supersonic steady flow of a nonviscous and ther-
mally nonconductive gas in which nonequilibrium physico-chemical processes
are occurring. The enthalpy A of a unit mass of the gas 18 determined by
the pressure p , the density o (or the temperature T of the transla-
tional degrees of freedom of some component of the gas), and by n para-
meters ¢(@,,..., ¢.), €.g. by the partial masses of the components and by
the energles of the various degrees of freedom. We shall investigate plane
and axisymmetrical flows close to a homogeneous equilibrium flow proceeding
from left to right. Let the direction of the x-axis of the rectangular
coordinate system x, y colncide with the direction of unperturbed flow;
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in the axisymmetrical case the x-axis 1s the axls of symmetry and the origin
of wall curvature; the leading edge of the profile or the nose of the solid

of revolution are situated at x = O . There are no perturbations for
x = — = . The equations describing the flow are of the form
puly -+ pru, = — Py OUv, + pvvy = — Py

(puy")x + (pz’.yv)?/ =0, u(2h + wz)x +v (211 -+ wz)u =0 (1-1)
UQix -+ v = ri—l (O (p» 0 9) (i=1,...,n)
h = h(p, p, 9), w = u? + ®

Here u, v are the projections of the veloclty of the x- and y-axes;

the subscripts x and y denote the corresponding partial derivatives;

v =0 and 1 1in the plane and axisymmetrical cases; the expressions for

» and w,; are known, and in the case of equllibrium all w,= 0 ; 17,20
(the relaxation times) are constants inversely proportional to the rate con-
stants of the physico-chemical processes; if 7,=o , then ¢, 1s frozen;
if, on the other hand, T,= 0 , then ¢, is in equilibrium and 1s determined
by the equation w,= O .

All of the quantities are dimensionless. Let u’ and p,° be the dimen-
sional velocity and density of unperturbed flow, and £ a quantlity wilth the
dimension of length. Reduction to dimensionless form can be effected by
dividing x and y by £°, the velocitles by u; , the density by oo ,
the pressure by pa="U4,°?, the enthalpy by u«°?, the specific entropy s by
F , and the temperature by AR 'us°®, where £ 1s the gas constant of one
of the components. Reduction to dimensionless form of the parameters ¢,
can be effected by taking account of their dimensions, and this renders the
constants T, dimensionless as well. In problems not having a characteristic

linear dimensiom £°= ux°7,°, where 71,° 18 the dimensional value of the
relaxation time of the #kth process. In this case 7,=1 .

System .(1.1) must be supplemented by relations on the discontinuity sur-
faces. Let tan g = v/h , and let ¢ be the angle between the discontinu-
ity surface and the x-axis. They can then be written as (1 2)

[pw sin (0 —8)] = 0, [wcos (0 —8)] = 0

Ip + pw?sin® (0 —0)] = 0, [2h + w?] = 0, ;1 =0 (i=1,...,2)
where [¢] 1s the difference in ({ at the discontinuity.

2. Linearization of (1.1) and (1.2) is effected in the usual manner.
Representing each parameter as the sum of its unperturbed value and a small
addend, and retaining the same notation for the addends 4, v, p, p, h and
g as for the parameters themselves, we obtain in place of (1.1) the expres-

sion (2.1
Uy = — Pxy VU= —DPy, O + uy + vy + Vvy—l =0, hy=— Uy
n n
TiQix = WipP + 00 + 2 07 (i=1,...,n), h=h,p-+ ho+ Z hi7;
=1

=1
Here for ¢ = ((p, p, @) we have introduced the notation
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(), o= (G, = ()
PTNdp e, P \Opipat TH a’li"p,n,qﬁqi

The derivatives are here computed for unperturbed flow.
Linearizing (1.2) we obtain
[ul wno — [o] + [plwno = 0, [u]l + [¢] wno =0
2 [ulsin?o — [vlsin 26 4+ [plsin?o + [p]l =0 (2.2)
[h_i_u]:()’ [Qi]:() (t=1.,...,n)
The three first equations of this system together with the fourth, rewrit-

[ul 4 A, Ip] + &, [pl = 0

form a system of linear homogeneous equations for [u], [v],,[p] and [p] .
The slope of the discontinuity surfaces 1s determined by the condition of
its nontrivial solution and 1s glven by

— 1—nh
MG:iBmEiVMooz’—'i (Moozzcoo'zz 5 p) (2.3)

o

ten in the form

Here o, 15 the frozen speed of sound divided by us , 80 that M 1s the
frozen Mach number. Thus, as in ordinary gas dynamlcs, the weak discontinu-
ity lines coincide with the Mach lines of unperturbed flow.

Further, from the first, fourth and last equations of (2.1) with allowance
for (2.2) and for the fact that the flow 1s unperturbed for x = — = , we
find that n
p=h=—u, p=— WM oo2u — 2 aiq; (a:i:hihp_l) (24)

everywhere. =1

This and the second equation of (2.1) imply the potentiality of the flow.

If ¢ 1s the potential, then
U = @, V=g, (2.5)
The equations for ¢ and ¢ result from the remalning equations of
(2.1) and are of the form

002 x = —v v P a:q;
Bo’ @ ¥ (o), j§ 95, (2.6)

n
Tigix = — %P + 2’%5(15 (i=1,...,n)
i=1
Here the constants =, and x,, are glven by the relations

Ky = A[oo%‘)ip + Wip, Kij = @45 — a;

The nonvortical character of the flow 1s in line wilth the lack of an
increment s 1in the specific entropy. 1In fact, since s = s(p, n, ¢), it
follows that :

n

ds

(G or = (F)p. 1+ 2 (5)

s=\75— T = .

p /n, ¢ T\ B8R /p, 4 '21\'%1,- p.h.q,.;eqjqf
J:

But taking account of the reduction to dimensionless form
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(s [ Bp)p,g = — (0s/ Bh)p,q = — T 71,

and from the condifion of thermodynamic equillibrium of the unperturbed flow
we find that (63/3qﬁwhm€$a5==0. Hence from (2.4) we have it that s = O.
It also follows that in this approximation, as in ordinary gas dynamics,
discontinultles assoclated with both lncreases and decreases in pressure are
admissible.

The first equation in (2.6) can be changed into a form not containing g,
and their derivatives. This 1s achieved by its n-fold differentiation wilth
respect to x and by the elimlnation of ¢, from the resulting equations;
moreover, prior to each differentiation the ¢,, are replaced by thelr ex-
presaions from (2.6). The resulting equation %or ¢ 1s second order in y
and of order {n + 2} in x .

The number of constants in (2.4} ard (2.6) is important in obtaining the
similarity condition . There are 3n + n® such constants in addition to 84
{or ¥_ ). The replacement of g, by a;¢, and 7, by 7,47 and the division
of the kinetlcs equations by the coefficlents of ¢,, reduces their number
to n + n®. Further reduction to n{r + 3)/2 can be effected through the
use of Onsager's relations [13]. In writing the resulting equations in the
form (2.6), as the T, of each kinetlcs equation 1t 1is convenient to take a
quantity which 1s the inverse of the modulus of the coefflclent of ¢, and
gy in its right-hand slde which is of maximum absolute value.

3. For g2 > 0, i.e. for N,>1 , system (2.6) has two families of real
characteristics in addition to the streamlines y = const on which the last

n equations are fulfilled. If the total derivatives with respect to y
along them are primed, then the equations of the characteristics are

n n
T Flo=0, Fhou'+ 0" + 2 o577 (wu— X wiigi) +voy =0 (3.1)
j=1 i=1
Here and below the upper (lower) sign corresponds to the characteristies
of the first (second) family. The coincidence of the discontinuity surfaces
with the characteristics is a consequence of the linear approximation.

Since bodies whilch perturb the flow are not present with x < 0 , it fol-
lows by virtue of the parabolilclty of system (2.6) that the flow remains
unperturbed everywhere to the left of the characteristics emerging from a,
the front point of the solild. These characterlstics can be discontinulty
lines, so that perturbatlions of the flow parameters as they are approached
from the right generally differ from zero. The boundary conditions follow
from (1.2}, 2.3% and {2.5) and are of the form

Bootpx £ @y = 0, = 0, qg=10 for == F+Booly — ¥a) {(3.2)

Here the subscript & denotes parameters at the point a , and the con-
dition o = O follows from the continuity of the potential.

Conditions (3.2) must be supplemented by conditions of: nonleakage at
the boundary of the solld; constant pressure at the boundary of the stream
flowing into the medium at rest; symmetry along the flow axis {at emergence
of a jet and in channel flow) and limited perturbations at infinity. I
v = y°(x) 1s the equation describing the contour of the solid of revolution,
profile, or channel wall, and 1f p, 1is the difference between the pressure
of the medium into which the flow proceeds and the pressure of unperturbed
flow, then these conditions can be written as

Q00 y)=v(e, y ) =f (@) =dy (z)/ du, @, (, y,) = u(r, y,) = — p, = const (3.3)
G ) =@ =0 for ©> B [P |0, for 228 (¥ —y,), Yoo

In accordance with {3.3) and {1.2) the disruption of the continuity of the
boundary conditlons {e.g. a discontinuity in the contour) at the point b i3
usually associated with discontinuities at the point in all the parameters
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except ¢ and ¢ . The discontinulty propagates along the characteristic
which originates at 2 . The variation of parameter Jjumps along it can be
found from the second equation of (3.1), which is valld on both sides of the
discontinuity. Recalling that [g,] = O , we obtain

FBoo [u] + [2) + [u] 2 am®™ -+ vy [v] =0 (3.4)
j=1
Writing the second equation of (1.2) in the form
o [l + [0l =0 (3.5)

and solving the linear equation which results from the elimination of [v]
from (3.4) and (3.5), we find that

n
_ o\ y— 9 N fﬁ’} ~
ful = [uly (7) exp {j: _2[3:72'1 T; (3.6)

Here [u], 1s the discontinuity in u for y = y, . The discontinuities
in v, p, p and h are proportional to (] and can be determined from (2.5)
and (3.5). 8ince the perturbation of the equilibrium flow cennot increase
without 1limit with distance from the perturbation source, it must be the case
that n
2) axT 7t <0 (3.7
j=1
Moreover, in view of the independence of the nonequilibrium processes, the
signs of all the terms must coincide. Near equilibrium w, are proportional
to the partial derivatives of the entropy with respect to ¢,, so it can be
assumed that (3.7) follows from the conditions of stability of the equilib-
rium state.

As 18 evident from (3.6) and (3.7), the perturbation damping rate increases
with decreasing 7, and can be very large. It is interesting that for almost
complete damping it is sufficlent for the inequality |y — yp| S>> 2Boot;/ |ajjl
to be fulfilled for at least one process. This, of course, does not imply

the rapid damping of continuous perturbations to the right of the frozen
characteristic.

Formula (3.6) indicates that in the axisymmetrical case the perturbations
increase to infinity approaching the axis of symmetry even when they are
arbitrarily small for finite y as a result of the damping which results
from nonequilibrium. Because of the limitations of linear theory this result
does not correspond to true flow and requires nonlinear analysis. The same
situation obtains in ordinary gas dynamics, the difference being that there
the perturbations increase monotonously.

4, Let us investigate the flow in the neighborhood of the initial point
@ and the characteristic a¢ (the boundary of the perturbed zone) (Fig.1).
In the axisymmetric case for y,= 0O we have a pointed solid of revolution,
and for y,>0 a body of a shape close to that of a cylinder. 1In the vari-

ables B N2

r=YZE@—n) 9= @ (/1) =By (1)
the point a corresponds to 7 = O , the characteristic a¢ 1is the ray
G =umxn/ 4, and the veloclty components are given by Pormulas

=0, cos¥—@grisin®, v=_[f/(P, sind+ @,rcosB) (4.2)
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We shall attempt to obtain @ Og ﬁ) and qi(r, ﬁ) in the form of series

Q(ry0) = 2 ()%,  q(r, )= D) g (9)r¥

k=1 k=1
(i=1,...,n) (4.3)
The boundary conditions (3.2) on ac¢ then bedome
Px (/) = qip(n/4) =0 (i=1,...,n,k=1,...) (4.4)
The condition of nonleakage at the contour of the

body, i.e. the first equation of (3.3), applied to the
ray in contact with the body at the point a ylelds

Fig. 1

k-2
W0 (Ba) nBa + @' (8) = é%’i‘r ¥ M k=1..)  (45)

where ﬂa = tan™! (Ba;fa); the primes denote derlvatives with respect to ﬁ,
and y°0 = dky° (z) / dzk.

The equations for determining ¢, and ¢,, are obtained by substituting
expansions (4.3) into system (2.6) written out in the variables r and &
and by equating the coefficlents of equal powers of r . From the first '
equation we obtain the recurrent system

1.’ {k (k + 2) @) cos 20 — (2K, sin 28 + @, cos 20) +

n
+ Bor? D) [kqyyg €08 & — (g45_, sin BY 1} —
i=1

—vsin® {(k —1) @, [1— (k — 3) c03 20] + @_, [cot & - 2 (k — 2)sin 28] +

n
+ 041 008 20 — B2 S, [(k—1) gy, 005 D — (g4, sin 0)’]} =0 (k=1,...) (4.6)
i=1

The equations for ¢,, can be integrated, and with allowance for (4.4)
yileld 8

.k n 0o z
S‘lﬁ Zscij 3%‘%5—& G=1,...,n k=1,...) (&T)
j=1 n/4
Recalling that ¢,=¢,,= O for % < O , we can show that the solution of
the first equation of (4.6) under conditions (4.4) and (4.5) ylelds the flow
of a frozen flow past any cone (v = 1, y,= O) or, in the contrary case, of
any cone (or obtuse angle). We thus have [14)]

_ _fasin®s (s i S —r
o (r, 0)_600 szzﬁa[vcoszﬂ cos® Arch ( ﬁ)]r+k§2q)k(ﬁ)r (4.8)

for v=1, y,=0.

9y (8)=— % @, () —

@(r, 0y =B fo (sin B —cos ) r + D} @y (9) rk (4.9)

for y=0 or v=1, but y,> 0 . k=2

In a small nelghborhood of the initial polnt the flow 1s determined by
the first term, which yields the frozen flow. The remaining terms of the
expansion for sufficiently small r do not play a significant role. Due
to the finiteness of the nonequilibrium process rates this result 1is natural
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ag% one which has already been proved for bodies of finite thickness [15 and
161.

System (4.6} is too complex to permit analytic construction of the solu-
tion for any % . However, the solution can in fact be constructed in the
neighborhood of the initilal characteristic, since ¢ = m/4 1is a regular
singular point of each equation of the system {with v = 0 for & = 2).
Methods for constructing linearly independent solutions of the corresponding
homogeneous equatlions already exist [17]. Prom these and from a particular
solution of the nonhomogeneous equation, which is sought in the form of a
generalized power series, & solution satisfying {4.4) can be constructed.
The successive examinatlon of (4.6) and (4.7) shows that any @ (U), and
therefore any @ (r,{ﬂ, is a generalized power series in (ﬂ-mm 1nt/4) with the
exponent 3/; for a pointed solid of revolution and unity in other cases.
The first coefficlents of each series are proportional to the first coeffi-
cilent qn(ﬂj, which is found from (%.8) and (4.9). Upon substitution of
expressions for @y () into (4.3), the series in r which gives the first
coefficlent of the generallzed series for (p(r,ﬂ), can be summed. Assuming
that the remaining series in positive powers of r and €§ -g§! 4) vield
a certain analytic function ¢°(r,6),we obtain expressions which are valid
near the initial characteristic

o(r, 9) = Lol (2 _29)" (54 r(8—T)oe(r, )] x

By Veos2g\ 2
n
r a;%;
X exp (m}é -g*) (4’10)

for vw=1, y,=C , and

o(r, 0)._“.._.« 1{/3.311( N V2 )lhv<ﬁ_..,£.\r N

r+n, V2 4
X [i + r(’&-—z—) ¢°(r, ﬁ)} exp (W 32%?) (4.11)

in the other cases.

The resulting expressions make it possible to use {4.2) to find the velo-
city components as functions of r and ¢ and, with the aid of (4.1), as
functions of x and y . For a pointed s0lid of revolution the velocity
discontinulties assoclated with passage through the initial characteristic
do not occur. This also happens in ordinary gas dynamics, and was proved
for the case under consideration by Tkalenko fls}. On the other hand, {4.10)
yields more information than Formula (4.3) in [10], and at the same time
proves the validity of the latter at any distance from the axis of aymmetry.
The derivatives of u and v with respect to ‘9 on the initlal character-
istic are Infinite. In the case of plane bodles and bodies of nearly cylin-
drical shape, & and ©» are discontinuous by virtue of (4.11), but their
derivatives are finite. The discontinulty damping of course coincides with

{3.0).

5. In investigatling the linsarized equations of nonequilibrium flows
extensive use has been made of the Laplace transform. In this we can proceed
elther from system (2.6) or from the {(n+ 2)-th order equation for the poten-
tial. Let us follow the first of these alternatives.
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In consldering problems corresponding to Fig.l, let us take

e A A N W (5.1)

instead of x and y as our Iindependent variables.

In the case of a proflle or a plane wall, we set, as we did for a polnted
solld of revolution, ¥.= 0 . In the remaining problems we take y,=1,

1.e. we choose the ordinate of the point a as our characteristic linear
dimension.

In the new variables system (2.6) becomes n

e 1 (. — ¢ = — OOM“, S1 aiq;:
29, —@,,+v (9, —,) B A (5.2

n
Tiq‘ii_*_%icpi _ Z‘_‘ ’}(“q} (i:l,...,n)
j=1

Let 8 bYbe a complex variable. Recalling that the domaln of perturbed
flow is given by € 2 O , we introduce the representations
[o0] o0

@ (s, m) = Scp(ﬁ, n) exp (— s§) dE, Qi(s,m) = \qi(E, n)exp(—st)dE

0

=y

In using the Laplace transform speclal consideration must be glven the
characteristics which are discontinulty surfaces and add extra terms to the
expressions for the representations of the derivatives. It turns out, how-
ever, that upon application of the Laplace transform to (5.2) and replacement
of the derivative representations by their expressions, such terms vanish
(by virtue of (3.2),(3.5) and the continuity of & and g¢), while ¢ and
¢ are given by Equations

n
N 4 (v — 2sm) @’ — = -2
( ) vs®@ = snB.,"? Y a0,
n j=1 (53)
7;1 (i = 5785) Qs =ms® (1=, n)
Here 6,, 1s the Kronecker delta and the primes denote derivatives with
respect to n . Equations (5.3) make it possible to express all the ¢, 1in

t £ o
erms o Qi= sD;Dr @ (i=1,...,n) (5_4)
D = D(s) = det|d"|, D; = Dy (s) = det | d{""| (i, r,t=1, ..,n)

Al =%, —st,8,, d''=d" @+i), d&'P=x

Computing the leading terms of D and D,, which are polynomlals of
degrees n and n—1 , we find that for large |s

DDt == — vl sl 0 (s71) (i=1,...,n) (5.5)

At the same time, without limiting generality we can assume that D(0)# 0,
since the equation D(0) = O signifies the linear independence of the right-
hand sides of the kinetic equations of system (5.2), and therefore makes it
possible to reduce their number and the number of parameters ¢ without
increasing the order of the remaining equations. As a rule, Equatlon D(0) =0
indicates that in the choice of ¢ thelr number exceeded the required
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minimum, 1.e. that finite connections such as conditions stipulating the con-
servation of chemical elements were not exploited.

Substituting (5.4%) into the right side of the first equation of (5.3), we
find that n

D"+ (v—2s0) ' —s(v 4 snB) O =0 (B =B(s)=D"1p_ 1 Z “fDJ') (9.6)

In accordance with (5.5) for large |e] j=1
n
B(s) = — 5B ) ape;vi 4o (sY) (5.7
j=1

Substituting @ = Z exp(en) for (5.6) as in [10], we obtaln Equation

NZ" +vZ' —ns%?(s) Z=0 (*=1+B)
whose solutions are expressed in terms of exponentials (for v = 0) or cylin-
drical functions (for v = 1). The coefficients of the linearly independent
solutions are determined by boundary conditions (3.3) on the surface of the
body and a8 n - » , In considering the conditions at infinity we take into
account Equation (3.7). The potential ¢ 1s found from ¢ with the aid of
the inverse transform. For flow past the upper surface of the profile we
obtain Sof-ico
P& M =—gg | wrexp{si(t—o)n-+Elds (5.8)
8q—1i00
Here the integration 1s carried out along the straight line Res& =g, lying
to the right of all the singularities of the integrand; F#(e) is such that
if L~! 1s the symbol of the inverse transform, then

L7 [F ()] = Poa £ (§) = Boady® (B) / 4t (5.9)
Similarly, for a body of nearly cyclindrical shape we have
Spt-ico .
1 i H,W (isvo) exp [s (E + 11— By
P& M) = o () HTE ds  (5.10)

l .
Voo soH, W (isB,0)
where F(8) is determined from (5.9) and l{Q’ and 179) are cylindrical func-
tions of the third kind (Hankel functions).

For a pointed solid of revolution (5.11)
3pt-ioo
1 . o3
P& M =g | F () H® (isno)exp [s (& + m ds, L7 [F (s)) = — L L
sg—ico

This formula can be derived from the results of [10]. The integral repre-
sentations of u and v are found by differentiating (5.8),(5.10) and (5.11)
with allowance for (2.5) and (5.1).

In the internal problems we take the ordinate of the point @ as our
characteristic dimension and define & and n as

E=z+ By — 1), N=00wy (5.12)
The boundary conditions are the third equation of (3.3) on the flow axis,
and the first or second equation of (3.3) for y = 1. The domain of
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verturbed flow once agaln lles in 7 = O .

As our final result for flow in a channel we have

~o-F 00
.

PEM =5 | TFECE MexplsE—n+Balds (313

so—1i00
G cosh(sMG) /sinh (5B ,5) for v=20
G M) =1 517, . (5.14)
671 Jy (isns) / J1 (isB..5)  for v =1
Here. F(s) 1s given by (5.9) and J, and J, are cylindrical functions
of the first kind (Bessel functions).

where

If by G(e, n) and ~(s) we understand

cosh(SNG) fcosh(sB5) for v=10
Glsim)= {Jo (i510) / JolisPee®)  for V=1

L [F (s)] = — pa (5.16)

then (5.13) remains valid for a jet as well. The integral representations
of u and U are obtained from (2.5) and (5.13) with allowance for (5.12)
and (5.14)to (5.16). The representations of ¢ 1n all cases are determined
from the resulting expressions with the aid of (5.4). Instead of the Hankel
and Bessel functions in (5.10),(5.11),(5.14) and (5.15) we can make use of
the modifled Bessel functions I and K , although their arguments are com-
plex for complex s .

6. Integral representations can be used for determining the flow para-
meter flelds. Quite useful here is the multiplication theorem whose use
reduces solution to finding the originals of the expressions not containing
F{s). Thus, for a plane wall (5.8) and (5.9) yleld

(5.45)

£
28 M =fapE M)+ D (fs— P (E—Ep M) + Sf' OpE—tmd  (6.1)
0

Here b 1is the contour discontinuity point, J/. and [, are the values
of y°’ before and after the discontinulty, sum~

ims s mation 1s carried out over all the discontinuity
e — points, and
’// \\ 1 so—}-‘ioo "

i =_._ S —exp{s[(1—c¢c ds 6.2

- P (8, M) Swi 3 s p{s( N+ ED (6.2)
so| Res S0

\\f' 0 Similar formulas are obtalned in other prob-
M / lems, and not only for v , but for uy as well.
NI The form of w(g, n) depends in large measure

on the form of the function & (s)=V1 + B (s).
Fig. 2 Since B(e) is a ratio of polynomials of degrees

n—1 and n , it follows that o°(s) is a ratio
of polynomlals of degree n . If %° and &
are the number of different roots &,° and 8, of the numerator and denomi-
nator, and k,° and k,, are thelr muitiplicities, 1t follows that

L k.° L K.
a2(s) =11 (s—s;7) / IT (s —sp)7i (6.3)
j=1 =1

The coefficients of the polynomials in the numerator and denominator are
real, therefore their rcots are either real or complex conjugate, and
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0(8) = o(8) . The latter makes it possible to replace the integral in (6.2)
by some integral in the upper part of the contour (Im s = 0), this is valid
for any contour symmetrical relative to the real axis. The function a(s)
is not single-valued. The single-valued branch 1s isolated by introducing
a number of branch cuts which connect the zeros of the numerator and deno-
minator and lie in the finite portion of the plane s . By virtue of (5.7)
the straight line Re & = 8, in (6.2) for £ > O can be replaced by a con-
tor consisting of the circle containing all the roots s, and £,° and the
straight lines [I'_. and T, (Filg.2). The integrals over f_ and f¢ cancel,
and the contour in (6.2) reduces to the circle. This possibility was already
noted by Clark [4]. Turning now to the upper half of the circle and inte-
grating over the real variable, e.g. along the arc of the circle, we repre-
sent y(€, m) as a real integral with finlte limits which can be evaluated
numerically. If all the roots of (6.3) 1lie in the left half-plane, then the
circle can be made to pass through the point & = O by adding to the inte-
gral the contribution of % due to the pole at the origin of the coordinate
system. Such a contour substitution is also possible in the case of pointed
solids of revolution, however, here the parameters on the surface of the
body can be found in another way by expanding g (1) for small n . As in
{10] we have 0

1 ¥° () B,
u(z, y°) = —Z?S” (x)ln_—z_ +
1 4 ¢ 0 x x®
T SS' (@—t) [lni(z—) + % 2 k;Ei (sﬁ)—é D)k Ei (s*0)] dt
p .

=1 i=1
Here Ei(z) 1s an integral exponential function, S(x% = % {x) 1is the

cross sectional area; 1t is assumed that S’(x) and 5”(x) are continuous
(*#). The case considered 1in [10] corresponds to hy= k,°= 1 . For a cone

S(x) = me®x® and k Ko
0 08,5(0) - g2 . om0
u(r,y )zeﬂlniz__ + _‘Z—[,zlkjEl(ij)_ 2]1 ki Ei(s; x)]
j= j=

Since the effect of the nonuniformlity must vanish for x - = , the two
latter formulas imply that all the roots of (6.3)
lie in the left half-plane. This property, as
well as inequality (3.7) can apparently also be
obtained from the conditlons of thermodynamlc sta-
billity.

After u has been determined, the values of
g can be found in accordance with (5.4),

E
06 m={ue v E—na

0

8+ i00
( Di
Fig. 3 b (8) =54 S IT(i—;)exp (sE) ds

and are easily be expressed in terms of residues at the points s,,...8,.

7. We can use integral representations for determining the properties of
the flow far away from the body (for large =n). 1In additlon, these can be
used to investigate the flow for 2 = 0O and € - « , However, the first
case 1s considered in detail in Sections 3 and 4, while in the second it is

*)} In expression (5.5) in [10], the roots s, and 8,° in the arguments of
Fy are erroneously transposed.
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easy to apply the corresponding limiting theorem of operational calculus to
show that 1f there exist constant limiting values of the flow parameters,
these are equilibrium in character, 1.e. are obtainable from (2.6) for

T,= ... = T,= 0O .

System (2.6) describes flow for any T . If T,= O , then 1t can be
rewritten, eliminati ¢, with the ald of the last equation. The new sys-
tem differs from (2.6) in the number of equations and in its coefficients
which are determined in terms of the same partial derivatives as the initial

ones, provided ¢, 1s assumed to be a function of p, p, ¢;,..., 9,-7 by
virtue of w,(p, p, ) = O .

Further, it 1s possible to set 171,_,= 7,= 0 , etc. Let us assign sub-
scripts 1,..., n to the corresponding N, and B8,. Here B8g,, corresponds
to equilibrium flow, B84,., to flow in which all ¢, are equillibrium with
the exception of ¢,, etc.

The results of [12] imply that
Myn>...> M, Boon >+ - > By (7.1)

Thus, the corresponding characteristics are distributed in the way shown
in Fig.3, where the numbers O,..., n denote characteristics with slopes

BQJ"-) Bgu

Let us also introduce partially frozen flows with T,z e, T, = To= o,.,,
and asslign the subscripts 1, 2, 3, ..., n to the functions Bks) and a(s);
moreover, B,(s8) = 0 and c,(sj = 1 ., In accordance with these deflnitions
the 1nitial 8,, N,, B(e) and o(s) ought to have been assigned the sub-
script O . It can be shown that

Book=B°°6n_k (0) (k=0,...,n) (72)
From (7.1) and (7.2) we find that ¢,(0) > 1 for ¥ <n

Let us consider flow past a profile. Here we introduce ¢ and 7T as
stated at the end of Section 2, numbering the parameters ¢ in the order of
decreasing T , and taking u,°T,° as our £°. The coefficients in Pp(s) in
this case do not exceed unity.

It is natural to expect that far away from the profile the flow 1s close
to equilibrium and that the effect of the initlal point to the left of the
first equilibrium characteristic is small. To investigate this problem let
us consider the behavior of §(&, n) for large y and @ & = x — B,,¥ Wwhich
1s finite or increases more slowly than y .

sqFi00
VO, Y) =g § 3 oxp(0)exp U5 [Ban—Buo O}ds  (7.3)
so—1i00

By virtue of relation (7.2) the poilnt 8 = O 1is a saddle point of the
function § [ Boon—Pw 6 (s)]. As in the case of a single nonequilibrium para-
meter [4], for & = O the contour of steepset descent (the broken curve in
Fig.2) touches the imaginary axis, and with increasing distance from s = 0
both of its branches asymptotically approach the negative ray of the real axis.

ILet 8 = 0 be a unique or the highest saddle point. Replacing the inte-
gration contour in (7.3) by the contour of steepest descent and taking
account of the residue at the origin as in [4], we obtain

1 1 2B, ¥ 28,57 B, (0)
¢(I,y)~7+—2‘el‘f-f/‘a—;“ (“=——‘W‘) (v.4)
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Here B,(s) = dB(s)/ ds , so that
Bs(o)=b1+bgt2+-.. +bn Tn

The constants &, are on the order of unity. In accordance with the
assumptlon made about the character of the saddle point, #,(0)'< O and
a > 0 . The difference between (7.4) and the case of a single nonequilibrium
process [3 and 4] lies in the form of 3, (0) . As in that case, the perturb-
ations between the 1initlal frozen and the equilibrium charcteristics are
rapldly "damped due to the rapid tendency erf z to -1 , for 2 < O and the
width of the transitional zone referred to y near the equilibrlum charac-
teristic diminishes as y’i’ . We note that the condition y >» 1 required
for the validity of (7.%) does not exclude very small dimensional values of
y with high nonequilibrium process rates.

If T2t m+1r 1.e. with a large difference between the rates of the two

groups of processes, the first m are practically frozen, and as regards
the remaining ones we can expect a pattern similar to that Just considered.

let 6= a—P,,.my. We can show that

1 sy-tico
PO =5 | L oxp(68)oxb (us (B o — BoS (I} s =
8y—i00
1 "y
=5 S < exp (s8) exp {(ys (B pom — BacOp ()]} ds 4+ O (% )
sy—100 !

After & has been replaced by er71,,,, the last integral with y>» 7,,,
reduces to an integral with a large parameter y/*t,,n , which 1s mvestigated
in the same way as (7.3).

Taking as our characteristic dimension u°,73,,, we obtailn

1 1 T — Boo n-m Y ZBoozBm; (0)
VP (=, y)~-§~+ ?erf——%.;‘——— (otz—— -———-—) (1.5)

BOO n-m

In contrast to (7.4), the accuracy of the latter formula with increasing
¥ 1increases only for y< 7,. It is subsequently violated for y>» 1> 1,
the flow 1s described by Formula (7.4). Similarly, for 7, > T,% ...>» 1',
we note a stepwise transition from one partially equilibrium characteristic
to another. By virtue of (6.1), all the foregoing 1s also valid for inter-
nal discontinuity points, and translation of the origin to the point under
consideration preserves i? 4} and (7.5).

The author is grateful to A.B. Vatazhin for useful discussions.
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